Subpicosecond Excited-State Proton Transfer Preceding Isomerization During the Photorecovery of Photoactive Yellow Protein.

نویسندگان

  • Elizabeth C Carroll
  • Sang-Hun Song
  • Masato Kumauchi
  • Ivo H M van Stokkum
  • Askat Jailaubekov
  • Wouter D Hoff
  • Delmar S Larsen
چکیده

The ultrafast excited-state dynamics underlying the receptor state photorecovery is resolved in the M100A mutant of the photoactive yellow protein (PYP) from Halorhodospira halophila. The M100A PYP mutant, with its distinctly slower photocycle than wt PYP, allows isolation of the pB signaling state for study of the photodynamics of the protonated chromophore cis-p-coumaric acid. Transient absorption signals indicate a subpicosecond excited-state proton-transfer reaction in the pB state that results in chromophore deprotonation prior to the cis-trans isomerization required in the photorecovery dynamics of the pG state. Two terminal photoproducts are observed, a blue-absorbing species presumed to be deprotonated trans-p-coumaric acid and an ultraviolet-absorbing protonated photoproduct. These two photoproducts are hypothesized to originate from an equilibrium of open and closed folded forms of the signaling state, I(2) and I(2)'.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoactivation of the photoactive yellow protein: why photon absorption triggers a trans-to-cis Isomerization of the chromophore in the protein.

Atomistic QM/MM simulations have been carried out on the complete photocycle of Photoactive Yellow Protein, a bacterial photoreceptor, in which blue light triggers isomerization of a covalently bound chromophore. The "chemical role" of the protein cavity in the control of the photoisomerization step has been elucidated. Isomerization is facilitated due to preferential electrostatic stabilizatio...

متن کامل

A comprehensive study of isomerization and protonation reactions in the photocycle of the photoactive yellow protein.

The light-activated photoactive yellow protein (PYP) chromophore uses a series of reactions to trigger photo-motility and biological responses, and generate a wide range of structural signals. To provide a comprehensive mechanism of the overall process at the atomic level, we apply a CASPT2//CASSCF/AMBER QM/MM protocol to investigate the relaxation pathways for a variety of possible isomerizati...

متن کامل

Signal transduction in the photoactive yellow protein. II. Proton transfer initiates conformational changes.

Molecular dynamics simulation techniques, together with semiempirical PM3 calculations, have been used to investigate the effect of photoisomerization of the 4-hydroxy-cinnamic acid chromophore on the structural properties of the photoactive yellow protein (PYP) from Ectothiorodospira halophila. In this bacteria, exposure to blue light leads to a negative photoactic response. The calculations s...

متن کامل

Hydrogen Bonding Controls Excited-State Decay of the Photoactive Yellow Protein Chromophore

We have performed excited-state dynamics simulations of a Photoactive Yellow Protein chromophore analogue in water. The results of the simulations demonstrate that in water the chromophore predominantly undergoes single-bond photoisomerization, rather than double-bond photoisomerization. Despite opposite charge distributions in the chromophore, excited-state decay takes place very efficiently f...

متن کامل

Contrasting the excited-state dynamics of the photoactive yellow protein chromophore: protein versus solvent environments.

Wavelength- and time-resolved fluorescence experiments have been performed on the photoactive yellow protein, the E46Q mutant, the hybrids of these proteins containing a nonisomerizing "locked" chromophore, and the native and locked chromophores in aqueous solution. The ultrafast dynamics of these six systems is compared and spectral signatures of isomerization and solvation are discussed. We f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 1 19  شماره 

صفحات  -

تاریخ انتشار 2010